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The pelagic Gulf of Mexico (GoM) is a complex system of dynamic physical
oceanography (western boundary current, mesoscale eddies), high biological diversity,
and community integration via diel vertical migration and lateral advection. Humans also
heavily utilize this system, including its deep-sea components, for resource extraction,
shipping, tourism, and other commercial activity. This utilization has had impacts, some
with disastrous consequences. The Deepwater Horizon oil spill (DWHOS) occurred at
a depth of ∼1500 m (Macondo wellhead), creating a persistent and toxic mixture of
hydrocarbons and dispersant in the deep-pelagic (water column below 200 m depth)
habitat. In order to assess the impacts of the DWHOS on this habitat, two large-scale
research programs, described herein, were designed and executed. These programs,
ONSAP and DEEPEND, aimed to quantitatively characterize the oceanic ecosystem of
the northern GoM and to establish a time-series with which natural and anthropogenic
changes could be detected. The approach was multi-disciplinary in nature and included
in situ sampling, acoustic sensing, water column profiling and sampling, satellite remote
sensing, AUV sensing, numerical modeling, genetic sequencing, and biogeochemical
analyses. The synergy of these methodologies has provided new and unprecedented
perspectives of an oceanic ecosystem with respect to composition, connectivity, drivers,
and variability.
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INTRODUCTION

Of the ecotypes of the Gulf of Mexico (GoM) affected by the
Deepwater Horizon oil spill (DWHOS), the open-ocean pelagic
ecotype was by far the largest. The spill began on April 20, 2010,
about 66 km off the coast of Louisiana, at a depth ∼1,500 m
and continued for 87 days (Beyer et al., 2016). Some percentage
of oil, other hydrocarbons, and injected dispersant reached the
sea surface and seabed, whereas 100% occurred within the deep-
pelagic domain (200 m depth to just above the seafloor). During
the summer of 2010, a continuous plume of oil over 35 km in
length was discovered at approximately 1,100 m depth (Camilli
et al., 2010). This plume persisted for several months, prompting
concern about the effects of the DWHOS on the meso- and
bathypelagic (200–1000 and >1,000 m depths, respectively; deep-
pelagic, cumulatively) faunas. Deep-pelagic animals are known to
vertically migrate to shallow, epipelagic (0–200 m depth) waters
at night to feed (Sutton et al., 2020), a process which ostensibly
increases exposure throughout the water column and connects
the shallower and deeper parts of the oceanic GoM.

Gaining insight and understanding of pelagic ecosystems
over time requires a multidisciplinary approach, given their
complex physical (4-D, Lagrangian), biological, and ethological
(vertically migratory) nature. Here we describe the sampling,
sensing, and analysis methods of two major research programs,
both aimed at characterizing effects, or potential effects, of
the DWHOS on the epi-, meso-, and bathypelagic faunas
of the northern GoM. The first program, ONSAP (Offshore
Nekton Sampling and Analysis Program), was supported by
the National Oceanic and Atmospheric Administration (NOAA)
as part of the DWHOS Natural Resource Damage Assessment
(NRDA) conducted in 2010–2015. This program encompassed
in situ net sampling, water column profiling, and active acoustic
sensing (Supplementary Tables 1,2) to address the question,
“What could have been affected by the DWHOS in the deep-
pelagic GoM?” The dearth/lack of pre-DWHOS data and the
needs of the NRDA process required this initial approach.
The second program was DEEPEND (DEEp PElagic Nekton
Dynamics), a research consortium supported by The Gulf
of Mexico Research Initiative (GoMRI) from 2015 to 2020.
This program, which added satellite remote sensing, AUV
sensing, physical oceanographic numerical modeling, pelagic
microbial ecology, genetic analysis, biogeochemical analysis,
and trophic ecology (Supplementary Tables 3,4) was both
a continuation and evolution of ONSAP. The additions to
DEEPEND, when integrated with foundational information from
ONSAP, addressed the questions, “What are the natural drivers
of pelagic ecosystem structure in the GoM?” and “Did pelagic
faunal abundance variations after DWHOS exceed this ‘natural
envelope’?”

SURVEY APPROACH

The overall goal of the initial ONSAP project was to survey
and quantify the deep-pelagic life forms living within or
traveling through the area of the GoM affected by the oil

spill (Frank et al., 2020; Sutton et al., 2020). Of interest was the
water column fauna at the mesopelagic/bathypelagic interface,
the depth stratum containing the deep hydrocarbon plume.
The plume was discovered in areas surrounding the Macondo
wellhead where the spill originated. To accomplish this goal,
a multi-disciplinary approach was used. Acoustic profiles
were collected to synoptically quantify organisms distributed
throughout the water column. These can easily be repeated for
comparisons across space and time. While a very useful tool,
acoustics cannot discern between individual species nor can it
detect many deep-pelagic organisms without swim bladders or
air pockets. Discrete-depth midwater trawling was conducted to
identify and quantify the organisms collected during both day
and night to account for vertical migration. These results also
help to ground truth the acoustic profiles. Environmental factors
such as temperature, conductivity, and dissolved oxygen were
collected from both trawl-mounted sensors and CTD rosette
profiling from 0 to 1500 m depth. Details of survey design and
methodologies are described further below.

When planning the DEEPEND program, several additional
components were added to the survey approach to fill in
data gaps and to expand on research objectives. A remote
sensing and satellite imagery component was added to
identify mesoscale oceanographic and riverine discharge
features to inform planning and execution of field work
(e.g., Androulidakis et al., 2019). A glider was deployed to
collect oceanographic data that were assimilated in the ocean
model which was used to establish DEEPEND cruise tracks.
This multidisciplinary methodology, integrating physical
oceanographic modeling, satellite observation, and in situ
sensing, provided the spatiotemporal habitat context by which
pelagic faunal composition, abundance and distribution were
analyzed (i.e., biophysical coupling; Meinert et al., 2020; Milligan
and Sutton, 2020; Pruzinsky et al., 2020).

A biogeochemical component was added to directly measure
the amount of petrogenic contamination in animal organs,
muscle tissues, and eggs using polycyclic aromatic hydrocarbons
(PAHs) as a proxy (Romero et al., 2018, 2020). A molecular
taxonomy component (DNA barcoding; Hebert et al., 2003)
was added to help identify damaged, cryptic, and juvenile
specimens where morphological characters do not yet exist
or could not differentiate between species (e.g., Moore et al.,
2020). The gene sequences analyzed are well established as
robust markers for species identification of marine fishes
(Ward et al., 2009) and invertebrates (Mantelatto et al., 2018).
A population genomics component was added (double-digest
Restriction Associated DNA sequencing; ddRADseq) to study
genetic diversity and connectivity of the GoM and adjacent water
deep-pelagic fauna (Timm et al., 2020b). Genetic diversity and
connectivity can be used as proxies to measure population health
and resilience (Oliver et al., 2015). Over a time-series, these
measures can show how diversity is maintained and restored
in the face of anthropogenic and/or natural disasters. A trophic
ecology component, using Stable isotope analysis (SIA), was
added to identify feeding relationships among taxa, estimate
trophic positions, and delineate energy flow (Richards et al.,
2020). Understanding the flow of energy through this deep-sea
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ecosystem is essential to be able to identify linkages which may
be vulnerable to disasters such as an oil spill. A microbial ecology
component was added to help characterize pelagic habitats (along
with environmental and ocean modeling data) and to investigate
the dynamics of diel vertical migration using acoustic backscatter
data and eDNA sampling (Easson et al., 2020).

The time-series aspect of these two programs provides
information on the patterns of abundance and distribution
of the pelagic fauna, the concentration of PAHs therein, and
the pattern of genetic diversity following a major marine
disaster. Information such as this also provides a basis
against which to compare hindcast-derived abundance estimates
using proxies for data that did not previously exist (e.g.,
larval and adult deep-pelagic fish abundance relationships;
the former data were collected prior to the DWHOS, while
the latter were not). The multidisciplinary nature of these
two programs facilitates an ecosystem-based approach to
guide interpretations of assemblage-level data. For example,
using ddRADseq in combination with physical oceanographic
modeling provided evidence that the Loop Current could be
facilitating genetic connectivity in pelagic shrimps, with its
concomitant implications for the recovery and resilience of a
species (Timm et al., 2020a). In another example, microbial
assemblages were characterized using abiotic and biotic data
collected via CTD sensing and their dynamics interpreted using
MODIS satellite imagery (Easson and Lopez, 2019). In summary,
results derived from each component were valuable in their
own right, but each also added necessary information for
other working groups.

Transect Design
During ONSAP field operations, a subset of the Southeast Area
Monitoring and Assessment Program (SEAMAP; Eldridge, 1988)

stations surrounding the DWHOS site was sampled (Figure 1),
with original station nomenclature maintained. Sampling the
entire 46-station grid took approximately 3 months, requiring
that sampling be divided into several legs for resupply
and personnel changes. This necessity dictated that sampling
transects be arranged by logistics (time to station, weather,
and personnel availability) in lieu of oceanographic and/or
ecological considerations. Sampling, acoustic sensing, and water
column profiling were conducted twice at each station (day
and night). Sampling of the entire grid was conducted three
times over a 9-month period, with each station being occupied
either three (most stations) or two times over the course of
ONSAP (Figure 1).

Due to time constraints, only a portion of the stations
sampled during ONSAP were sampled during individual
DEEPEND cruises, each of which lasted approximately 15 days.
DEEPEND cruise tracks were designed to transect as many
water masses (Common Water and Loop Current, sensu
Johnston et al., 2019; Boswell et al., 2020) and mesoscale
features (eddies, Mississippi River plumes) as possible during
each cruise in order to model faunal assemblage structure,
abundance, and distribution as a function of biophysical
drivers. Because the location, intensity, and persistence of the
GoM’s salient oceanographic features are constantly in flux,
we considered both hindcasts and forecasts of hydrographic
conditions from the United States Naval Research Laboratory’s
Hybrid Coordinate Ocean Model (HYCOM; see section
“Hybrid Coordinate Ocean Model”) along with satellite imagery
(see section “Remote sensing/chlorophyll”) in selecting the
location and timing of DEEPEND sampling stations from
the original ONSAP sampling grid (Figure 2). This “directed
sampling” approach allowed statistical analysis of population and
assemblage variability as a function of environmental variability,

FIGURE 1 | ONSAP MOC10 stations sampled during the winter, spring, and summer 2011. Symbol colors represent the number of seasons (up to three) each
location was sampled.
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FIGURE 2 | DEEPEND MOC10 stations sampled between 2015 and 2018. Symbol colors represent the number of cruises during which each location was sampled.

a methodology applied to both DEEPEND and the preceding
ONSAP data.

Hybrid Coordinate Ocean Model
Hybrid Coordinate Ocean Model (HYCOM), implemented at
1/25◦ horizontal-resolution for the GoM (18 to 31◦ N., 77 to
98◦ W.), was run in “real-time” in the weeks before and during
the DEEPEND cruises (DP01 through DP06, Supplementary
Table 3), providing surface and sub-surface predictions through
the pelagic ocean. In order to sample important features, pre-
determined cruise tracks and stations were adjusted depending
on proximity to these predicted mesoscale oceanographic
features (e.g., eddies and fronts). Model predictions were
delivered in the form of “first-look” visualizations via web
portals. The model was configured with a 32-layer hybrid
(σ/z/ρ) time-variant vertical structure, which was post-processed
into a time-invariant, 50-level, z-vertical structure for end-
user dissemination. In this configuration, the model assimilated
daily observations using 3-D variational data-assimilation,
received (initial) boundary information from the Global Ocean
Forecasting System (Metzger et al., 2014), and was forced by 3-h
momentum and heat fluxes from the Navy Global Environmental
Model (NAVGEM). Tidal boundary conditions for water level
and barotropic velocity were provided by the global Ocean
Tide Inverse Solution (OTIS), and rivers were implemented as
a “precipitation bogus,” specified by a monthly climatological
database. Further information and detailed documentation about
HYCOM can be found at hycom.org.

For the DEEPEND cruise campaigns, the model provided up
to 120 h of forecasts, at 3-h frequency, of the 3-D oceanic physical
environment (sea surface height, ocean currents, temperature,

and salinity). The HYCOM model was initialized on January
1, 2015 and ran continuously through December 31, 2018. Its
outputs for 2015 (Cruises DP01 and DP02), 2016 (DP03 and
DP04), 2017 (DP05), and 2018 (DP06) were deposited in the Gulf
of Mexico Research Initiative Information and Data Cooperative
(GRIIDC; Supplementary Table 5).

Remote Sensing/Chlorophyll
In the GoM, the location and intensity of mesoscale features can
change dramatically in a few days, requiring that ocean color
imagery be used to determine the precise location of surface
features (e.g., Figure 3), especially the location of Mississippi
River plumes and the Loop Current. While the location of
surface fronts may not coincide with water mass boundaries
at bathypelagic depths, the material and energetic relationships
between euphotic and deeper waters were considerations when
planning DEEPEND sampling transects.

Ocean color satellite images from the Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite were processed at
the University of South Florida (USF) Optical Oceanography
Laboratory through a Virtual Antenna System (VAS; Hu et al.,
2013). Ocean color imagery is based on spectral reflectance of the
surface ocean, which depends on the absorption and scattering of
sunlight in near surface waters and therefore carries information
on surface water constituents such as phytoplankton chlorophyll
and colored dissolved organic matter (CDOM). The chlorophyll
imagery was derived using NASA standard algorithms to remove
atmospheric effects and convert surface reflectance to chlorophyll
(Hu et al., 2012). Clouds, sunlight, and limited viewing angles can
reduce the area of reliable ocean color satellite data. Thus, multi-
day composites of MODIS ocean color imagery were created
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FIGURE 3 | Examples of MODIS ocean-color composite images created for the DEEPEND study region (26–30◦N, 85–91◦W) during DP06 (A–C for July 22, 25, and
30, 2018, respectively). Imagery from several days was combined to emphasize recent surface feature locations. In agreement with HYCOM model predictions,
features in the left portion of these images tended to move toward the southwest at more than 20 km per day, while features in the lower central portion of the
images were influenced by the Loop Current and moved to the east-southeast at about 50 km per day.

to decrease the fraction of the cruise area imagery that would
otherwise have been masked or obscured. Due to the movement
of surface fronts (sometimes more than 20 km over several days;
Figure 3), satellite images from several days (up to a week) were
combined such that the locations of ocean color features in the
most recent images would be emphasized. The composites were
sent to the Chief Scientist aboard the ship and the supervisor
of glider operations so that transects could be adjusted to avoid
or examine particular features. While sea surface temperature
(SST) imagery was also examined, solar heating of the surface
waters diminished the practical use of SST imagery to monitor the
changing location of mesoscale features during the late-season
(August) cruises.

FIELD SAMPLING AND WATER-COLUMN
SENSING

Net Sampling
The vertical distribution of micronekton in the water column
from the surface to 1,500 m was quantified by sampling discrete-
depth intervals using a Multiple Opening Closing Net and
Environmental Sensing System (Wiebe et al., 1985; Sutton et al.,
2010) with an effective mouth area of 10 m2 (referred to as
MOC10 hereafter; Figure 4) when towed at a 45o angle. The
MOC10 (3.41 × 4.69 m mouth opening) was equipped with
six nets of 3-mm uniform mesh which were opened and closed
at specific depth intervals on command from the ship through
conducting trawl wire. This procedure yielded one oblique
sample from the surface to the maximum depth sampled (net 0)
and five discrete-depth samples (nets 1–5, Table 1). The rationale
for these depth intervals, following Sutton (2013) and listed from
deep to shallow, was: Net (1) sample the bathypelagic fauna
living below the deep hydrocarbon/dispersant plume [i.e., below
1,200 m depth; Net (2)] sample the bathypelagic fauna within
the stratum occupied by the deep plume (1,000 to 1,200 m
depth); Net (3) sample the deep mesopelagic fauna (600 to

1,000 m, the daytime depths of occurrence of most vertically
migrating taxa and persistent depth of occurrence of non-
migrating mesopelagic taxa); Net (4) sample the fauna within
the upper mesopelagic zone (200–600 m, daytime depths of
shallow mesopelagic migrators and nighttime depth of weakly
migrating taxa); and Net (5) sample the fauna of the epipelagic
zone (0–200 m, the nighttime depths of most vertically migrating
mesopelagic taxa and persistent depth of non-migrating surface
fauna). Trawling was conducted twice at each station, centered
at solar noon and midnight, to quantify diel vertical migration.
Instruments were mounted to the trawl frame to measure depth,
temperature, and salinity [conductivity], as well as the mouth
angle of the net through the water. The volume of water filtered by
each MOC10 net was measured by a Tsurumi-Sikie-Kosakusho
Co., Ltd. flowmeter mounted on the MOC10 frame (adjusted for
towing angle) facing directly into the flow of water. The trawl was
towed at 1.5–2.5 knots and retrieved at a rate of 5 m min−1. The
total volume of water filtered varied by net depth stratum and
ranged from 6,500 to 70,000 m3 (Supplementary Tables 1,3).
During the ONSAP, MOC10 sampling on the M/V Meg Skansi
occurred almost continuously from January to September 2011
(Figure 1). In total, 241 trawl deployments were conducted at
58 stations, yielding 936 quantitative, discrete-depth samples
(Supplementary Table 1). During DEEPEND, sampling occurred
in either May or August (the height of dry and wet seasons in
the GoM, respectively) aboard the R/V Point Sur from 2015–
2018 (Figure 2). In total, 122 trawl deployments were conducted
at 24 stations, yielding 470 quantitative, discrete-depth samples
(Supplementary Table 3). A quantitative sample was defined as
having been collected within the depth bins detailed in Table 1
as well as having a valid measurement of the volume of seawater
filtered by that net.

The MOC10 system was chosen for its discrete-depth
sampling capability (versus non-closing nets), a key
consideration for quantifying the abundance of vertically
migrating taxa. The 10 m2 MOCNESS was chosen over a 1 m2

MOCNESS, as the former selects for micronekton (2–20 cm body
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FIGURE 4 | MOC10 unit used to quantitatively sample discrete-depth strata during ONSAP and DEEPEND cruises. Image courtesy of DEEPEND/Danté Fenolio.
Written informed consent was obtained from the individual for the publication of any potentially identifiable images included in this article.

length) as opposed to plankton (Wiebe and Benfield, 2003). The
fixed mouth area and the integrated flow meter allow for precise
quantitative sampling, a prerequisite for time-series analysis.
Lastly, the MOC10 can be deployed from an intermediate
(regional-class) research size vessel with a single aft winch
and conducting cable. Larger, dual-warp trawls require larger,
fisheries-capable research vessels whose expense and availability
are often prohibitive. That said, there are caveats with any
sampling system, including the MOC10. The mouth and mesh
size of rectangular midwater trawls limit the speed at which
they can be towed, allowing for net avoidance by larger, more
mobile taxa (Pearcy, 1983; Kaartvedt et al., 2012; Kwong et al.,
2018). The multiple opening/closing nets may also be prone
to “net contamination,” where animals from non-target strata
can squeeze through the mouth bars of a closed net. We found
the latter to be infrequent, and readily recognizable when it
occurred. Taking all these factors into consideration, the MOC10
was determined to be the best gear to sample deep-pelagic

TABLE 1 | Discrete-depth ranges targeted for sampling via MOC10 during both
ONSAP and DEEPEND cruises.

Net number Depth range (m)

Net 0 0–1500

Net 1 1500–1200

Net 2 1200–1000

Net 3 1000–600

Net 4 600–200

Net 5 200–0

micronekton/nekton in the GoM in a quantitative fashion in
order to accomplish the goals of ONSAP and DEEPEND.

Midwater Trawl Sample Processing
ONSAP
After each MOC10 deployment and retrieval, individual nets
were washed down with seawater and the contents of each codend
were rinsed into separate numbered containers. Specimens
from each codend sample were then concentrated with a sieve
and placed into labeled collection jars and preserved. Larger
specimens were curated separately in labeled jars. Nets 1–5 were
preserved with buffered 10% formalin: seawater, while net 0’s
were preserved in 95% non-denatured ethanol (EtOH) for genetic
analyses. When the size or amount of gelatinous zooplankton
exceeded storage capacity, individuals of each taxon were sorted
into a graduated beaker, the volume and weight recorded,
and the animals discarded at sea. The remaining gelatinous
individuals were preserved with the rest of the catch. No sub-
sampling occurred during at-sea processing. After each cruise,
the samples were transported to Nova Southeastern University’s
(NSU) Oceanic Ecology Laboratory, where they were sorted
by major taxon, and distributed to the appropriate laboratory
for species-level identifications by experts within each major
taxonomic group. Specimens were then enumerated, weighed,
and measured. Data were entered and stored as described in
section “Biotic databases.”

DEEPEND
Midwater trawl sample processing at sea was more involved
during DEEPEND than ONSAP (i.e., there was extensive
subsampling for genetic and biogeochemical analyses), requiring
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additional handling and data management procedures. Upon
retrieval of the MOC10, catches from each net were rinsed
into separate containers and kept in cold (4◦C) seawater during
shipboard processing. This step is extremely important; deep-
pelagic animals tend to degrade quickly at room temperature due
to their chemical composition. Samples were sorted separately
and sequentially to avoid mixing specimens from different
collection nets (i.e., depth strata). While each sample was being
processed, all others were stored in a refrigerator at 4◦C.

Fishes, crustaceans, and cephalopods were rough-sorted by
higher taxon and then identified to lower taxonomic levels
(usually species) by onboard taxonomic specialists. Identified
animals were counted and weighed to the nearest gram on a
motion-compensating scale in batches per lowest taxonomic unit.
Up to 25 specimens of each taxonomic unit were measured
to the nearest millimeter per sample. All data were entered
directly into the DEEPEND Nekton Database at sea (see section
“Biotic databases” for biotic database description). Animals that
were not subsampled for other analyses (described below) were
preserved and brought back to the lab. Animals that were not
identified to species at sea were examined in the lab post-cruise
for further identification.

Genetics sub-sampling
As part of DEEPEND’s initiative to catalog the species diversity
of the deep-pelagic waters of the GoM, a ∼650 bp segment
of the mitochondrial Cytochrome c oxidase I (COI) gene
and/or a ∼550 bp segment of the large mitochondrial subunit
16 or 28S genes were sequenced from a subset of fishes,
crustaceans, and cephalopod species. This method, “DNA
barcoding,” allows researchers to use a partial DNA sequence
to identify an organism to the species level. It is particularly
helpful in cases where the specimen represents an undescribed,
“cryptic” species, an undescribed early-life-history form, or when
definitive morphological characters are not available (e.g., male
anglerfishes, trawl-damaged specimens, etc.).

Tissue samples for genetic barcoding were taken from up to 10
specimens of each fish species and up to five specimens of each
crustacean and cephalopod species collected during DEEPEND
cruises. Initial morphological identifications were conducted at
sea, and subsequently checked by COI, 16S, and/or 28S barcoding
(depending on taxonomic group). Tissues were preserved in
either 95% non-denatured EtOH or RNALater. In addition to
these samples, up to 50 tissue samples per cruise were collected
for temporal population genomics studies (ddRADseq; Peterson
et al., 2012) of eight fish species and six crustacean species
(Timm et al., 2020b, Supplementary Table 6). Additionally,
tissue samples from three species of cephalopods were used
to compare the genetic connectivity of each species between
the GoM (Supplementary Table 6) and the Bear Seamount
region of the northern Atlantic Ocean (Timm et al., 2020a).
In all cases, paired plastic identification tags were kept with
each tissue sample and the corresponding individual voucher
specimen to maintain data integrity before, during, and after
barcoding procedures.

These methods have proven useful for the study of diversity,
health and resilience in the GoM (Judkins et al., 2016, 2020;

Timm et al., 2019, 2020a,b). A major challenge of the DNA
barcoding method was matching the genetic sequences with those
already submitted by other researchers in the Barcode of Life
Database. There were many instances where either one genetic
sequence had more than one species name assigned to it, multiple
sequences were attributed to the same species, or the species
name listed in the database conflicted with the identification
made by DEEPEND taxonomic experts.

Stable isotope analysis sub-sampling
A thorough understanding of deep-pelagic ecosystems requires
detailed knowledge of food webs including descriptions of
feeding relationships among taxa, estimations of trophic
position, and delineations of energy flow. Food webs have
traditionally been examined through gut content analysis
(GCA) which can require thousands of samples, a high level
of taxonomic expertise, and is best suited for organisms that
ingest prey whole. SIA is a powerful complement to GCA, as it
is not as dependent on taxonomic expertise, can be applied to a
range of taxa regardless of feeding mode, and can be conducted
with fewer samples. However, interpretation of SIA data can
be difficult due to significant spatiotemporal variation in the
isotopic signatures of primary producers (isotopic baseline)
which can be conserved in higher-order consumers resulting in
misinterpretation of feeding relationships and incorrect trophic
position estimates. Amino acid compound-specific isotope
analysis (AA-CSIA) is a more refined technique that can help
distinguish between variation in consumer isotopic signatures
caused by changes in the isotopic baseline and changes in the
diets and feeding habits of consumers (Popp et al., 2007). The
method uses “source” amino acids that accurately reflect the
isotope values of primary producers and “trophic” amino acids
that can be used as indicators of change in consumer feeding and
diet (McClelland and Montoya, 2002; Chikaraishi et al., 2009).
Given the advantages of SIA, and because several high quality
GCA datasets currently exist for deep-pelagic assemblages in
the GoM (Flock and Hopkins, 1992; Hopkins et al., 1996), SIA
and AA-CSIA were employed to provide a complementary
description of the trophic structure of deep-pelagic assemblages
in the GoM (Richards et al., 2019, 2020). To better inform the
study design, catch data from MOC10 sampling and prior GCA
investigations in the GoM were leveraged to identify numerically
dominant species that represent important energy vectors
connecting primary and secondary production with higher-order
consumers. These species encompassed an array of migratory
strategies (synchronous vertical migrators, asynchronous
vertical migrators, and non-migrators) and feeding modes
(Supplementary Table 6). Additionally, data from the HYCOM
and MODIS were used to ensure specimens were collected from
salient mesoscale features (e.g., cyclonic and anticyclonic eddies,
Mississippi River plume), providing as complete a representation
of deep-pelagic trophic structure as possible.

Following collection through MOC10 sampling, specimens
for SIA and AA-CSIA were identified and enumerated at sea, with
specimens selected for bulk SIA frozen whole at −20◦C, while
specimens selected for AA-CSIA were frozen whole in liquid
nitrogen before transport to Texas A&M University at Galveston.
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SIA and AA-CSIA specimens were kept in long-term storage at
−20 and −80◦C, respectively. Muscle tissue used for SIA and
AA-CSIA was dissected from the lateral musculature of fishes,
from the anterior portion of the mantle from cephalopods, and
from the dorsal portion of the abdomen in decapod crustaceans.
Samples were then rinsed with deionized water to remove trace
carbonates, freeze dried, and homogenized using mortar and
pestle. Information on remaining procedures during SIA and AA-
CSIA can be found in Richards et al. (2019) and Richards et al.
(2020).

Polycyclic aromatic hydrocarbon analysis sub-sampling
Polycyclic aromatic hydrocarbon (PAH) analyses were conducted
on GoM deep-pelagic micronekton to determine the extent and
persistence of DWHOS-derived oil contamination. Smaller fishes
(<15 mm), cephalopods, and shrimp samples collected for PAH
analysis were stored whole in pre-combusted (450◦C for 4 h)
glass vials and frozen in a −20◦C freezer. The larger fishes
(>15 mm) were dissected at sea to remove internal organs
(liver, stomach, heart, and intestines), gills, muscle tissue, and
eggs (if present). Each dissected tissue was stored separately
and frozen. All samples were transported on dry ice to USF
(Supplementary Table 6). Whole-body samples were dissected at
USF to collect internal organs, muscle tissue, and eggs (if present)
from fishes and shrimps, and mantle tissue and eggs (if present)
from cephalopods. For a complete description of methods and
findings for fishes see Romero et al. (2018) and for cephalopods
see Romero et al. (2020).

In situ Sensing
Abiotic Sensing
MOC10 sensors
The MOC10 was outfitted with pressure (depth), temperature,
and conductivity (salinity) sensors, which were calibrated
annually. The sensors recorded a reading once every four seconds
during the entire tow.

CTD sensors
ONSAP. A Sea-Bird SBE 19 plus V2 CTD profiling package
was deployed at each station to at least 1,500 m (when the
bottom depth was greater than 1600 m). Stations with water
depths less than 1,600 m were profiled to full water column
depth within 100 m of the bottom (Supplementary Table 2).
The CTD was mounted to a 12-Niskin bottle (12-L) rosette
and equipped with a dissolved oxygen sensor (Sea-Bird SBE-43),
two fluorometers (WET Labs CDOM and WET Labs ECO-
AFL/FL), and a turbidity meter (WET Labs ECO-NTU). The
CTD data were processed following the DWH-NRDA CTD
processing protocol. Calibrated data from each sensor were
averaged in 1-m bins within Sea-Bird’s SBE Processing software.
For all deployments, only data from the downcasts were used in
characterizing the water column structure.

DEEPEND. A 12-Niskin bottle (12-L) rosette with CTD was
deployed from the R/V Point Sur at DEEPEND stations
(Figure 2), usually to depths greater than 1,000 m. There
were 106 CTD profiles collected during the DEEPEND cruises
(Supplementary Table 4). The Sea-Bird 911plus CTD on

the sampling rosette combined measurements of conductivity,
temperature, and pressure, with additional sensors connected
to the CTD on a per-cruise basis. These sensors included
one or more dissolved oxygen sensors (Sea-Bird SBE-43), a
transmissometer (WET Labs C-Star), and fluorometers (WET
Labs ECO CDOM, ECO chlorophyll a, or Chelsea UV
Aquatracka). The number and type of sensors varied between
cruises, but information from the dissolved oxygen sensor
and chlorophyll fluorometer was available at almost all of the
DEEPEND stations. The CTD data were post-processed using
Sea-Bird’s SBE Data Processing software, which converted the
data to engineering units as well as computed salinity and
dissolved oxygen concentrations. To increase the consistency of
in situ chlorophyll a fluorometer results between the DEEPEND
cruises, the measurements of water-sample chlorophyll a and
CDOM absorbance were used to scale the CTD’s in situ
fluorometer measurements. The measurements were binned
(using median values) into 1-m depth intervals. Both the raw and
binned CTD data for each DEEPEND cruise are available through
the GRIIDC data repository (Supplementary Table 5).

Slocum glider sensing
During select DEEPEND cruises, a 1000-m depth-rated Slocum
Electric Glider (Figure 5) was used to characterize the upper
400 m (on average) of the GoM water column. The glider
was equipped with a Seabird SBE41CP CTD, two WET Labs
fluorometers, two Satlantic radiometers, and an Aanderaa
dissolved oxygen sensor. The fluorometers were equipped to
sample for chlorophyll, CDOM, backscatter at 660 and 880 nm,
and turbidity. All sensors sampled at 0.25 Hz. The radiance and
irradiance sensors sampled at four wavelengths: ∼412, 443, 556,
and 683 nm. The glider transited vertically between 2 m and max
depth (ranging from 400–800 m) at ∼0.1 m/s which resulted in
a vertical sample resolution of ∼0.4 m. The measurements were
taken at various depths and included conductivity, temperature,
depth, chlorophyll fluorescence, gelbstoff fluorescence, dissolved
oxygen, and light field measurements. While the glider was

FIGURE 5 | Slocum glider during DP02 cruise deployment.
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deployed at sea, it surfaced and communicated to an onshore
control station at predetermined intervals, typically every 3 h.
Launch, transit progress, and recovery of the glider position were
planned and conducted, in part, by utilizing the HYCOM to
provide context of the predicted current structure of the Loop
Current and eddies. Model input for mission planning allowed
glider adaptive sampling of features and assisted piloting to avoid
unfavorable currents wherever possible. Once recovered, the
complete measurement suite was downloaded from the vehicle,
processed, and made available through USF and national data
archives, including GRIIDC. The glider temperature and salinity
data were assimilated into the HYCOM to assist in analyses of
subsurface water characteristics and validation of ocean models,
which was used to support the DEEPEND cruises.

Biotic Sensing
Acoustic backscatter
Two different vessels collected hydroacoustic data during the
ONSAP and DEEPEND sampling programs. Simrad split-beam
echosounder systems (EK60 and EK80) were used on both
vessels; however, the transmitted frequencies varied according
to vessel (Table 2). Transducers were mounted from a pole
mount on both the M/V Meg Skansi and R/V Point Sur.
While both vessels transmitted at 18 and 38 kHz, the higher
frequencies were intermittently available. During each survey,
the echosounder system was calibrated following the standard
sphere method described by Demer et al. (2015). Measured gains
and offsets derived from the Simrad lobe calibration program
were recorded and input into the data analysis process. The
echosounders were operated consistently among the surveys to
ensure comparability over time. Multifrequency backscatter data
were recorded simultaneously from each transceiver with a ping
rate set to 0.2 Hz.

Analyses of raw backscatter data were processed in Echoview
(PTY. Ltd.). Data were manually scrutinized for interference,
noise, and other artifacts, and data processing routines were
applied to reduce the effects of these on the processed data
following methods outlined in D’Elia et al. (2016). Specifically,
data were corrected for the effects of attenuation due to
propagation losses and absorption. Intermittent noise spikes and
transient noise were removed with Echoview (Ryan et al., 2015).
Following that, a background noise removal process was applied
(De Robertis and Higginbottom, 2007). Data were re-sampled
at 500 m × 5 m (horizontal by vertical) elementary distance
sampling units (EDSU) to generate analysis cells in which the
echo integral was derived for each transect. Multifrequency
comparisons were drawn to examine water-column backscatter
between 18 and 38 kHz (D’Elia et al., 2016; Boswell et al., 2020).

The main limitation or bias associated with this method is
attributing the backscatter to specific taxa. Using “ground-truth”

data from direct biological sampling (i.e., nets) to interpret the
backscatter patterns is the ideal methodology and was employed
in both ONSAP and DEEPEND. Another potential limitation
when using acoustic data across wide depth ranges is the potential
effect of resonance when vertically migrating animals with gas
bladders change depth. This effect occurs because backscattering
intensity changes as a function of the surface area of a gas
bladder. Therefore, it is important to interpret acoustic data
carefully to account for this possibility (Davison et al., 2015;
Proud et al., 2019).

Water Sampling
During DEEPEND cruises, CTD profiles were used to identify
the depths of four “features of interest” at each station where
water samples were collected. The features of interest included
the surface layer, the chlorophyll-maximum layer, the oxygen-
minimum zone, and the maximum trawl depth at each station.
The depths of the chlorophyll maximum and oxygen-minimum
zone, which varied by station, were determined visually during
the CTD downcast using real-time data collected by fluorometer
and oxygen sensors. Once the station-specific water collection
depths were determined, three Niskin bottles were fired at
each of the four targeted depths during the CTD upcast,
yielding 36 L per depth.

Optical Absorption of Particulate and Dissolved
Material and Determination of Chlorophyll a
Concentration
The absorption of light within the surface waters is a
dominant factor in determining ocean color. Measurements of
the optical absorption spectra for particulates and dissolved
material in water samples were collected because they provide
information for the validation of ocean color imagery (e.g.,
section “Remote sensing/chlorophyll”), information about the
pigment composition of phytoplankton in a water sample, and
a measurement of the concentration of chlorophyll and dissolved
material in that water sample. Samples from waters near the sea
surface (<5 m depth) and the chlorophyll maximum were used
not only to estimate the chlorophyll a concentration, but also to
separate the water’s optical absorption spectra into contributions
from the sample’s particulate material, ap(λ), detrital material,
ad(λ), and CDOM, aCDOM(λ). Shortly after collection, samples
were filtered through a glass fiber filter to separate the particulate
constituents from a water sample, with additional filtration to
partition the dissolved material. Both the filter pad and filtrate
were then stored for additional processing and analysis ashore.

The chlorophyll a and CDOM measurements from the water
samples were used to standardize the in situ fluorometry values
as mentioned in section “DEEPEND”. While the variability in
the relationship between in situ fluorometric measurements and

TABLE 2 | Echosounder system properties used during multi-vessel studies in the GoM.

Program and date range Vessel Frequency (kHz) Pulse duration [kHz] Pulse rate (pps)

ONSAP, 2011 M/V Meg Skansi 18, 38, 70, 120, 200 4 ms [18, 38]; 1 ms [120] 0.2

DEEPEND, 2015–2018 R/V Point Sur 18, 38, 70, 120 4 ms [18, 38]; 1 ms [70,120] 0.2
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chlorophyll a concentrations and the necessity of validation
measurements is often acknowledged, the normalization of the
fluorometric data is frequently omitted in presentations of the
in situ fluorometry (Roesler et al., 2017). Not only was the
in situ environment during the DEEPEND cruises different
than those used for factory fluorometer calibrations, different
fluorometers were used with the CTD on different cruises. The
optical absorption information from the filter pads was used to
improve the consistency of in situ fluorometric measurements
between different casts and cruises.

The determination of optical absorption using this filter pad
method requires several liters of sample water for the clear
waters found throughout much of the DEEPEND sampling
region. This relatively large volume of sample water, and the
time and effort needed to filter and process that water, limits
the number of water sampling depths that can be practically
collected from a CTD cast. Though the samples were intended
to capture representative waters from CTD profile features (e.g.,
chlorophyll maximum depth intervals), unsampled variations in
planktonic composition and optical properties may occur within
features. Chlorophyll a concentration and optical absorption
spectra data are available through the GRIIDC data repository
(Supplementary Table 5).

Microbial Community Characterization
Seawater microbial sampling followed routine methods, as
described in Easson and Lopez (2019), to capture the dynamics
of microbial plankton communities in relation to a host of
biotic and abiotic factors. Briefly, seawater samples from all
four targeted depths (surface, chlorophyll maximum, oxygen
minimum, and maximum depth) were passed through 0.45-um
hydrophilic mixed cellulose ester filters, which were then frozen
and stored at −20◦C for subsequent DNA extractions post-
cruise. Subsequent next-generation sequencing and microbial
community analyses were conducted following the methods
of Easson and Lopez (2019). During seawater collection,
environmental metadata were simultaneously collected with
instruments on the CTD. These metadata provided context for
determining function and structure of the subsequently described
microbial communities.

The two main limitations of this method are that it does not
directly identify the function of community members or provide
an absolute abundance estimation (only relative abundance).
Assumptions are made based on substantial literature evidence
that these communities are responding directly to a particular
influence. Despite these limitations, these data remain useful in
capturing how microbial plankton dynamics are related to several
biological and oceanographic variables.

Stable Isotope Analysis of Particulate Organic Matter
Because a consumer’s isotopic signature is determined by both
its position in the food web and the isotope value of primary
producers, isotopic variation in primary producers can lead to
isotopic variation in consumers not reflective of a change in diet
or trophic status. Thus, when conducting SIA it is essential to
characterize the isotopic signatures of relevant primary producers

so that variation in consumer isotope values caused by shifting
isotope values in primary producers can be distinguished from
changes caused by differences in the feeding habits of consumers.
In order to establish an isotopic baseline in the pelagic GoM,
we conducted SIA on samples of particulate organic matter
(POM) to serve as a proxy for phytoplankton primary production
in the region. Water samples for POM were initially collected
from 12-L Niskin bottles deployed during CTD casts and then
transferred to clean 1-L Nalgene bottles, which were inverted into
500-ml Pall magnetic filter funnels. Samples of POM were then
obtained by filtering 5 – 20 L of water through pre-combusted
(2 h at 450◦C) 47-mm (surface and chlorophyll maximum) and
25-mm (oxygen minimum and maximum trawl depth) glass
microfiber filters (GF/F) under low pressure. Once sufficient
material had been obtained, filters were stored frozen at −20◦C
until processing for SIA.

COLLECTIONS AND DATABASES

Specimen Collections
The majority of specimens (fishes, crustaceans, and gelatinous
zooplankton) collected during both ONSAP and DEEPEND
are housed at the Guy Harvey Oceanographic Center, Nova
Southeastern University, Dania Beach, FL and tracked through
the biotic databases described in section “Biotic databases.”
Molluscan specimens were deposited in the National Museum
of Natural History, Washington, DC, United States, or at
the USF St. Petersburg, St. Petersburg, FL, United States.
All crustacean specimens used for genetics, including tissue
and DNA extracts, were assigned catalog numbers (HBG#) in
curated, databased research collections. All voucher specimens
and tissues were archived in the Florida International Crustacean
Collection (FICC), which currently houses over ∼10,000 curated
crustacean specimens.

The holotypes and paratypes for new species discovered
during these projects (e.g., Pietsch and Sutton, 2015; Judkins
et al., 2020) were deposited in museum collections appropriate
for each taxonomic group. Crustaceans and cephalopods
were deposited at the National Museum of Natural History,
Washington, DC, United States. Fishes will be deposited in one of
several museums based on the specific taxon: Lophiiformes will
be deposited at the Burke Museum, University of Washington,
Seattle, WA, United States; Stomiiformes will be deposited
at the Museum of Comparative Zoology, Harvard University,
Cambridge, MA, United States; and representative subsets of
the entire collection, or select specimens, will be deposited
at the Scripps Institution of Oceanography, the Louisiana
State University Ichthyology Collection, the Tulane Ichthyology
Collection, the Virginia Institute of Marine Science Ichthyology
Collection, the Yale Peabody Museum of Natural History, and the
Florida Museum of Natural History.

Biotic Databases
All biotic data are stored in Microsoft Access databases
at the Oceanic Ecology Laboratory at NSU (T. Sutton).
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Data collected during the ONSAP are stored as
“Nekton_Database_DDMMYY.accdb” and data collected
during DEEPEND are stored as “DEEPEND_Nekton_Database_
DDMMYY.accdb.” These are relational databases stored on
NSU’s servers with replication. There are three main tables:
(1) Field Sample/Trawl Field Data table containing the station
and sampling depth information, (2) Nekton Database table
containing the catch information (taxon, catch in numbers,
weight, etc.), and (3) Taxon List table containing the hierarchical
taxonomic information (class, order, family, etc.).

In addition, there are other tables to look up
and combine data. A Primary Key connects these
tables to one another.

Database Availability
DIVER
Biotic and abiotic data collected during the ONSAP are
publicly available through NOAA’s Data Integration Visualization
Exploration and Reporting (DIVER) tool found at https://www.
diver.orr.noaa.gov/. DIVER is a data warehouse and query
tool that allows public access to NOAA’s Damage Assessment,
Remediation, and Restoration Program data. These data are
collected in response to, and/or restoration of, environmental
damage caused by oils spills, releases of hazardous waste, or
vessel groundings. The DIVER Explorer query tool can be used
to search, filter, and download these data using links to popular
datasets, guided queries, or keyword searches. Data mentioned
in this paper can be located by linking to the popular dataset
“Deepwater Horizon NRDA data” and performing a keyword
search for “Meg Skansi.”

GRIIDC
Biotic (ONSAP and DEEPEND) and abiotic (DEEPEND
only) data are also publicly available through the GRIIDC,
housed at the Harte Research Institute for GoM Studies at
Texas A&M University, Corpus Christi. GRIIDC is a team
of researchers, data and topic specialists, and information
technology professionals who have developed a data management
system to organize, store, and disseminate data collected by
GoM researchers as part of the Master Research Agreement
between British Petroleum (BP) and the GoM Alliance. GRIIDC
has secured a funding agreement with the GoMRI, the
funding body of the GoM Alliance, to continue providing data
management and the dissemination of datasets to the scientific
community (both GoMRI funded and non-GoMRI funded
research) for a minimum of 10 years beyond the conclusion
of formal GoMRI funding in 2020 (i.e., through the year
2030, at a minimum).

All data produced by GoMRI-funded individuals and
research consortia (such as DEEPEND) are required to be
submitted to the GRIIDC repository in a timely fashion,
typically within one year of data collection and/or processing.
Upon submission, all datasets undergo a rigorous vetting
process led by GRIIDC subject matter experts who work with
researchers and the Data Manager to ensure data integrity,

organization, and discovery, including descriptive, ISO-19115-
2 compliant metadata. All datasets housed by GRIIDC are
assigned Digital Object Identifiers (DOIs) in the same manner
as publications to allow future researchers to use and cite
the data. See Supplementary Table 5 for a list of datasets
and their corresponding DOIs. All datasets are available at
https://data.gulfresearchinitiative.org/.

NCEI
Most environmental data, such as CTD and ship along-
track measurements, were submitted on behalf of DEEPEND
to the National Centers for Environmental Information
(NCEI) through a proprietary process developed between
NCEI and GRIIDC. Calibrated water column acoustic
backscatter data, including associated metadata, collected
during the DEEPEND program are also archived at
NCEI. The archive includes raw acoustic backscatter
data for each station that has corresponding net tow data
(Supplementary Table 5).

NCBI
DNA sequences obtained from barcoding were submitted on
behalf of DEEPEND to the National Center for Biotechnology
Information (NCBI) database. A compendium of specimen
information that includes ID Number, Cruise Number,
Collection Date, Collection Location, Taxonomic Species
Identity (Order, Family, Genus, and Species), and NCBI
GenBank Accession Numbers have been deposited into GRIIDC
(Supplementary Table 5). Additionally, the small subunit rRNA
gene was sequenced from samples collected in the water column
to identify the microbial community. These sequences were
deposited in the NCBI Short Read Archive where bioproject
accession numbers were assigned.
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N7XP7385; 10.7266/N7902234; 10.7266/n7-dd3p-t155; 10.7266/
n7-05f6-th15; 10.7266/N7ZG6QQ9; 10.7266/N7XP73B2;
10.7266/N7HM56TD; 10.7266/N71C1TZC; 10.7266/n7-1xs7-
4n30; 10.7266/n7-3p3y-g470; 10.7266/n7-hhnq-kh83; 10.7266/
N75M63Q3; 10.7266/n7-c56k-dp86; 10.7266/N7VX0F19;
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